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Considerable scientific interest is the development of mathematical models that describe the behavior of materials 
that are sensitive to deformation rate and can improve the accuracy of analytical calculations of their deformation in 
the region of noticeable changes of loading rates. Nonetheless, in most works, the problems were solved under the 
assumption of small displacements (geometrically linear statement of the problem). Meanwhile, in practice, this is 
not always true and bending of cover can be commensurable with its thickness, this article approximately solves the 
problem of geometrically nonlinear deformation of a thin elastic plate in aquasistatic setting under the action of an 
infinite normal uniformly distributed load moving along its surface at a constant speed. In the article, the methods of 
mathematical modeling, the analytical method, as well as the methods of spatial characteristics and bicharacteristics 
are used. The problem is solved in the quasistatic formulation and is reduced to a system of two nonlinear differential 
equations for deflections of the plate and the stress function, which include the speed of the load as a parameter. The 
results of methodological calculations are presented; based on these solutions of linear and nonlinear problems, they 
were compared, and the influence of finiteness of displacements on the critical speeds of the forces was determined. 
Materials of the article can be useful in the study of wave dynamics, aircraft, mechanics, and engineering.

Key words: thin plate, quasistatic solution, linear approximation, critical velocity, finite deflections

INTRODUCTION

When constructing mathematical models of deformation 
of thin-walled structures, it becomes necessary to take 
into account the nonlinear nature of the processes asso-
ciated with physical and geometric factors, which leads 
to the construction of more accurate and meaningful 
models, the analysis of which allows us to detect new 
phenomena and effects. The development of methods of 
mathematical modeling and computer technology led to 
an increase in the role of the numerical experiment. With 
its help, it was possible to investigate complex systems, 
increasingly getting closer to real ones.
The problem of the action of pressure wave on elements 
of thin-walled structures is encountered, for example, 
when calculating wing cover, as well as elements of ver-
tical and horizontal control of an aircraft in supersonic 
flight. The deformed state of such structures in the form 
of plates or shells was considered in monographs [1-3], 
as well as in journal publications [4, 5]. Nonetheless, in 
all these sources, the problems were solved under the 
assumption of small displacements (geometrically linear 
statement of the problem). In practice, this is not always 
true and the deflection of cover can be commensurable 
with its thickness [6-8]. Without studying the complete 
spatio-temporal picture of wave processes in bodies of 
finite dimensions arising under the action of unsteady 
dynamic loads, it is impossible to evaluate their per-
formance [9-11]. Thus, the study of the features of the 

propagation of three-dimensional waves in bodies of 
finite dimensions and identification of some patterns of 
unsteady processes in them is currently an important 
and urgent problem of both scientific value and applied 
interest. This brings us to the need to solve the problem 
in the geometrically nonlinear formulation.
In the present work, an attempt was made to take into 
account in quadratic form the finiteness of displacements 
of the deformable structural element in form of a plate. 
When investigating the problem as a whole, it is most 
interesting to find the influence of finiteness of displace-
ments of the plate on its deformed state and to compare 
the results with the solution of its linear part (small dis-
placements), as well as to establish the effect of the fi-
niteness of displacements on critical speeds of the forc-
es. Comparing these results, we can determine the need 
to take into account nonlinear effects when solving such 
problems.

MATERIALS AND METHODS

The proposed solution is based on the use of equations 
of non-linear bending of the plate (Margherequations) 
[12], obtained under the assumption of non-linear dis-
placements in quadratic form. Moving load is considered 
as an infinite normal uniformly distributed force moving 
with constant speed on the plate surface. The problem 
is solved in the quasistatic setting, according to which 
the deflections of the plate depend only on spatial co-
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ordinates and do not depend on time. The equations 
are solved using the Bubnov method [13] in a one-term 
approximation, and the problem is reduced to the cubic 
equation for deflection of the plate, which contains the 
speed of the load as a parameter. The sufficiency of such 
an approximation is determined by the nature of acting 
uniform load and is confirmed by calculations. The es-
sence of this method is a direct transition to a discrete 
calculation scheme, bypassing the stage of differential 
equations. The benefit of the method lies in its physical 
perceptibility and convenience in choosing the geometric 
shape and size of the elements. From the obtained solu-
tion, as a special case, a solution to the linear problem 
can be obtained and the critical speed of the load can 
be determined. Thus, Bubnov's method is based on the 
principle of possible displacements. The approximating 
function must be chosen so that it satisfies the geometric 
boundary conditions. Static conditions are not required. 
The problems of the action of moving load (pressure 
waves) on elements of thin-walled structures are en-
countered, for example, when calculating the cover of an 
airplane's wings during supersonic flight. A review of the 
work in this direction is given in [14-16]. In journal publi-
cations, similar problems were considered in articles [17, 
18]. Nonetheless, practically in all the above sources of 
the problem was solved in a geometrically linear setting. 
In the proposed work, an attempt was made to take into 
account the finiteness of displacements of the deform-
able structural element in the form of a plate.
Let us consider a thin elastic plate of rectangular shape 
in plan, referred to the orthogonal system of coordinates0 
xyz (Fig.1) on he surface of which in the direction of axis 
x with a constant speed V moves the endless normally 
distributed load with intensity p. 

Figure 1:The plate under influence of the moving load
Figure 1 conventionally displays it in the form of forc-
es acting along the line. The problem is solved in a 
quasi-static setting, following which the deflection of 
plate varies only longitudinal coordinates x, y and 
does not depend on time. Since the speed of the load 
is constant, then over time t its element will travel the  
distance (Eq. 1):

Then the inertial forces caused by this load will be  
(Eq. 2): 

The inertia of the motion of the plate itself is neglect-
ed in comparison with the inertia of the moving load. To 
solve this problem, we use the equations of geometrical-
ly nonlinear deformation of the plate in the mixed form 
(Margherrequations) [12] concerning its deflection wand 
stress functions F [19-21], which in the case under con-
sideration take the form (Eqs. 3-4): 

Where   ^2 is Laplace operator, D and h are the cylin-
drical stiffness and plate thickness, respectively, g is the 
gravitational acceleration. Nonlinear differential opera-
tors L (w, F) and L (w, w) have the form [22, 23] (Eqs. 
5-6):

Equations (3-4) represent a system of nonlinear differen-
tial equations with partial derivatives. To solve them, we 
use the Bubnov method [13] in a one-term approxima-
tion; the sufficiency of this approach for the problem un-
der consideration will be substantiated below. Following 
this, we represent the deflection of the plate w and stress 
function F in the form (Eq. 7):

Where A and B are unknown constants, ϕ and ψ are the 
specified coordinate functions that satisfy the boundary 
conditions at the edges of the plate. Applying the Bubnov 
method [13] to the second of equations (4) we express B 
through A (Eq. 8): 

Further applying the Bubnov method [13], taking into 
account (8), also to the first of equations (3), we obtain 
the cubic equation with respect to constant A form the 
approximation (Eq. 9): 

Where (Eqs. 10-12): 
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Here S is the area of plate. A particular point ofthis equa-
tion is that the load speed V enters into it as a parameter. 
The solution of equation (9) for a fixed value of speed 
can be obtained analytically in closed form. 

RESULTS AND DISCUSSION

Let us consider a square plate (a = b) freely supported 
on all edges by flexible inextensible ribs. We consider 
that the shape of its deformed surface in all the examples 
given below is symmetric concerning the x and y coordi-
nate axes. Then, the approximating functions in (7) take 
the form (Eq. 13): 

Where (Eqs. 14-16): 

At first, we solve the linear problem. 
Its resolving equation is obtained from (9) when the first 
term А3 is equal to zero. Then, starting from the condi-
tiond (V)=0 we define the square of the critical speed of 
the load movement (Eq. 17): 

When choosing approximating functions in the form (13), 
this velocity coincides with the corresponding velocity 
value from the work [24-26]. Considering (17), the de-
flection w of the center of the plate (x = y = 0) in the linear 
approximation can be represented as (Eqs. 18-19): 

Where VCR
2 is the square of critical speed of the moving 

load, determined by the formula (17), wST  is the static 
deflection of the center of the plate under the action of 
the uniformly distributed normal load of p intensity equal 
to constant A in approximation (7). For the plate with the 
relative thickness (Eq. 20): 

At m = n = 1 in approximation (13) dimensionless deflec-
tion (Eq. 21) with will be wST

*=1.168x10-5 and in the works 
[27, 28] the same value is equal to wST

*=1.136x10-5. Thus, 
we can assume that the use of one-term approximations 
of unknowns at solving this problem is justified. 

Figure 2 shows the dependence of the dimensionless 
deflection of the center of the plate w*=105 on the square 
of the relative velocity of the load V2/VCR

2. At V→VCR VCR
2 

deflections increase unlimitedly. 

When solving a geometrically nonlinear problem, we first 
consider the problem of static deformation of the plate 
under the action of normal load p. The resolving equa-
tion is obtained from (9) at V = 0. It allows an analytical 
solution and gives two complex conjugate roots and one 
real, which determines the deflections of the center of 
the plate (A = w) [29-31]. For the plate with a/h=20. Fig-
ure 3 demonstrates the dependence of dimensionless 
deflection of its center (Eq. 22):

Figure 2: The dependence of linear deflection of the 
center of the plate on the speed of movement of the 

load

from dimensionless linear load (Eq. 23): 

The dashed line indicates a solution to the same prob-
lem, but in a geometrically linear formulation. 
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Figure 4: The dependence of nonlinear deflection of the 
center of the plate on the speed of the load

Thus, consideration of the finiteness of displacements 
(Figs. 3-4) shows a strong influence of nonlinear effects 
on the results. This is especially noticeable in Fig. 3, 
showing the effect of nonlinearity on deflections of the 
center of the plate. It should be noted that there is a 
qualitative difference in the determination of critical ve-

locities in linear and nonlinear formulations. In the first 
case, when the velocity tends to a critical value, the plate 
deflections increase unlimitedly (Fig. 3) [32, 33]. Though 
in a nonlinear statement when reaching critical values, 
the rates remain finite. This result fully coincides with 
the data for solving stability problems under the action 
of static forces (Euler problems), which indicates the cor-
rect choice of the research method. 

CONCLUSIONS

Therefore, the article approximately solved the problem 
of geometrically nonlinear deformation of a thin plate in 
the quadratic approximation under the action of a moving 
uniformly distributed linear normal load. For this purpose, 
four options for posing the problem were considered – a 
static and dynamic solution to a linear problem, as well 
as a static and dynamic solution to a nonlinear problem. 
The dynamic tasks used quasistatic formulation, in ac-
cordance to which the deflection plate is not dependent 
on time, and determined only geometry of the plate. The 
sufficiency of a one-term approach when using the meth-
od of Bubnov is shown on the examples of the solution 
of linear problems.
Taking into account that the finiteness of displacements 
demonstrates a strong influence of nonlinear effects on 
the results. It should be mentioned that there is a qual-
itative difference in determination of critical velocities in 
linear and nonlinear formulations. In the first case, when 
the velocity tends to a critical value, the plate deflections 
increase infinitely, while in the nonlinear formulation, 
when the linear critical values are reached, these veloc-
ities remain finite. Summarizing all the above it can be 
stated that taking into account the geometric nonlinearity 
of deformation load on the plate strongly influences on its 
deformed state, heavily dependent on the speed of the 
load. Solving the problem in a linear formulation gives 
unsatisfactory results, while it is less laborious from a 
computational point of view. 
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